
Digital Object Identifier (DOI) 10.1140/epjc/s2004-02102-2
Eur. Phys. J. C 39, 435–438 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Energy dependence of gap survival probability and antishadowing
S.M. Troshina, N.E. Tyurin

Institute for High Energy Physics, Protvino, Moscow Region, 142281 Russia

Received: 8 April 2004 / Revised version: 31 October 2004 /
Published online: 25 January 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. We discuss the energy dependence of the gap survival probability which follows from the
rational form of the amplitude unitarization. In contrast to the eikonal form of unitarization which leads
to a decreasing energy dependence of the gap survival probability, we predict a non-monotonous form for
this dependence.

Studies of the processes with large rapidity gaps are very
important as a tool for the search of new physics. For the
first time such processes have been discussed in [1–3]. The
predictive power of QCD calculations for cross-sections of
such processes is affected by the uncertainties related to the
soft interactions (rescattering) in initial and final states.
The dynamics of such interactions is accounted for by the
introduction of a factor which is known as the gap survival
probability [3], i.e. the probability to keep away inelastic
interactions which can result in filling up by hadrons of
the large rapidity gaps. The energy dependence and mag-
nitude of the gap survival probability is an important issue
e.g. in the studies of Higgs production in double diffractive
exclusive and inclusive processes at Tevatron and the LHC
(cf. [4]). Extensive studies of the magnitude and energy
dependence of the gap survival probability have been per-
formed, and the results of these studies can be found e.g.
in [5–8].

The gap survival probability 〈|S|2〉 is determined by
the relation [3]

〈|S|2〉 =

∫ ∞
0 DH(b)|S(s, b)|2d2b∫ ∞

0 DH(b)d2b
, (1)

where DH(b) is the probability to observe a specific hard
interaction in the collision of the hadrons h1 and h2, and
P (s, b) ≡ |S(s, b)|2, where S is the elastic scattering S-
matrix, i.e. P is the probability of the absence of the
inelastic interactions. In the eikonal formalism which is
usually used for an estimation of 〈|S|2〉, the probability
obeys P (s, b) = exp(−Ω(s, b)). All estimations of the gap
survival probability performed on the basis of the eikonal
amplitude unitarization lead to a decreasing energy de-
pendence of this quantity. Therefore rather small values
of the cross-sections for diffractive Higgs productions are
expected at the LHC energies [9, 10].

However, there is an alternative approach to unitariza-
tion which utilizes a rational representation and leads, as it
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will be shown below, to a non-monotonous energy depen-
dence of the gap survival probability. Arguments based on
the analytical properties of the scattering amplitude [11]
provide support for the rational formof unitarization. In po-
tential scattering the rational form of the unitarization cor-
responds to an approximate wave function which changes
both the phase and amplitude of the wave. The rational
formof unitarization in quantumfield theory is based on the
relativistic generalization [12] of the Heitler equation [13].
In the U -matrix approach based on the rational form of uni-
tarization, the elastic scattering amplitude in the impact
parameter representation has the form

f(s, b) =
U(s, b)

1 − iU(s, b)
, (2)

where U(s, b) is the generalized reaction matrix, which is
considered to be an input dynamical quantity similar to
the eikonal function. The unitarity equation for the elastic
amplitude f(s, b) rewritten at high energies has the form

Imf(s, b) = |f(s, b)|2 + η(s, b) , (3)

where the inelastic overlap function

η(s, b) ≡ 1
4π

dσinel

db2

is the sum of all inelastic channel contributions. The inelas-
tic overlap function is related to U(s, b) according to (2)
and (3) as follows:

η(s, b) =
ImU(s, b)

|1 − iU(s, b)|2 . (4)

The probability is

P (s, b) ≡ |S(s, b)|2 =
∣∣∣∣ 1 + iU(s, b)
1 − iU(s, b)

∣∣∣∣
2

. (5)

Unitarity of the scattering matrix implies, in principle,
the existence at high enough energies s > s0, where s0 is
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the threshold of the new scattering mode, the antishadow
one. It has been revealed in [14], and the effects related
to antishadowing at the LHC energies have been discussed
in [15]. The most important feature of this mode is the self-
damping of the contribution from the inelastic channels.
The rational form of unitarization provides a smooth tran-
sition beyond the black disk limit, where the antishadow
scattering mode is realized, i.e. at high energies and at
small impact parameters the elastic scattering channel can
play a dominating role.

There are experimental indications that this mode can
indeed occur at very high energies. The analysis of the ex-
perimental data on high-energy diffractive scattering shows
that the effective interaction area expands with energy and
the interaction intensity–opacity increases with energy at
fixed impact parameter. At the Tevatron highest energy,√

s = 1800 GeV, the elastic scattering amplitude is very
close to the black disk limit at b = 0 [16], i.e.

Imf(s, b = 0) = 0.492 ± 0.008 .

The central inelastic collisions of the hadrons are far
from an amalgamation of the two hadrons in one region
of space as it was shown in [17], and the persistence of
longitudinal momentum takes place at very high energies.

The rational form of amplitude unitarization can be
put into agreement with the experimental data using var-
ious model parameterizations for the U -matrix. They all
lead to the same qualitative predictions, which reflect gen-
eral properties of this unitarization scheme. Originally the
Regge-pole model was used to get an explicit form of the
U -matrix [18] and a good description of the experimental
data has been obtained in this model [19] as well as in its
dipole–pomeron modification [20].

We use the model for the U -matrix based on the ideas
of chiral quark approaches [21]. It is in a good agreement
with the data [15,22,23] and is also applicable to the large
angle scattering. We would like to stress here that the
qualitative conclusions of the present paper do not depend
on the particular U -matrix parameterization.

In this model the picture of a hadron consisting of con-
stituent quarks embedded in a quark condensate is used.
This picture implies that overlapping and interaction of pe-
ripheral clouds occurs at the first stage of the hadron inter-
action. Non-linear field couplings could transform then the
kinetic energy to internal energy and as a result massive vir-
tual quarks appear in the overlapping region. These quarks
generate an effective field. Valence constituent quarks lo-
cated in the central part of hadrons are supposed to scat-
ter simultaneously in a quasi-independent way in this field.
Massive virtual quarks play the role of scatterers for the va-
lence quarks in elastic scattering, and their hadronization
leads to a soft production process of secondary particles in
the central region [24]. The number of such scatterers was
estimated to be

Ñ(s, b) ∝ (1 − 〈kQ〉)√s

mQ
DC(b) , (6)

under the assumption that part of the hadron energy carried
by the outer condensate clouds is released in the overlap re-
gion to generate massive quarks, where mQ is a constituent

quark mass and 〈kQ〉 the average fraction of hadron energy
carried by the constituent valence quarks. The function
DC(b) is a convolution of the two condensate distributions
Dh1

c (b) and Dh2
c (b) inside the hadron h1 and h2.

We will consider for simplicity the case of a pure imag-
inary amplitude, i.e. U → iu. The function u(s, b) is rep-
resented in the model as a product of the averaged quark
amplitudes 〈fQ 〉,

u(s, b) =
N∏

i=1

〈fQi
(s, b)〉 , (7)

in accordance with the assumed quasi-independent nature
of the valence quark scattering, and N is the total number of
valence quarks in the colliding hadrons. The essential point
here is the rise with energy of the number of scatterers like√

s. The b-dependence of the function 〈fQ〉 has the simple
form 〈fQ(b)〉 ∝ exp(−mQb/ξ). The generalized reaction
matrix gets the following form:

u(s, b) = g

(
1 + α

√
s

mQ

)N

exp
(

− Mb

ξ

)
, (8)

where M =
∑N

Q=1 mQ. Here mQ is the mass of the con-
stituent quark, which is taken to be 0.35 GeV1.

This model provides a linear dependence on
√

s for
the total cross-sections, i.e. σtot = a + c

√
s in the limited

energy range
√

s ≤ 0.5 TeV. Such a behavior and model
predictions for higher energies are, as already mentioned,
in agreement (Fig. 1) with the experimental data on total,
elastic and diffractive scattering cross-sections [22,23].

This unitarization approach leads to the following
asymptotical dependences: σtot ∝ ln2 s and σinel ∝ ln s,
which are the same for the various models and reflect the
essential properties of this unitarization scheme.

Thus, now the probability P (s, b) = |S(s, b)|2 can be
calculated in a straightforward way, i.e. we use for the
function u(s, b) formula (8), with parameter fixed from the
total cross-section fit, and the relation of the S(s, b)- and
the U -matrix (5). The impact parameter dependence of
P (s, b) for the different energies is presented on Fig. 2.

To calculate the gap survival probability 〈|S|2〉 we need
to know the probability of the hard interactions DH(b). To
be specific we consider the hard central production pro-
cesses

p + p → p + gap + (Higgs or jj) + gap + p . (9)

The interest in such processes is related to the clear ex-
perimental signature and the significant signal-to-back-
ground ratio.

We can write down the probability of the hard inter-
actions in the model as a convolution

DH(b) = σH

∫
Dh1

c (b1)wH(b + b1 − b2)Dh2
c (b2)db1db2 ,

(10)
1 The other parameters have the following values: g = 0.24,

ξ = 2.5, α = 0.56 · 10−4; these have been obtained from the fit
to the total hp cross-sections [22].
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Fig. 1. Total and ratio of elastic to total cross-sections of pp and p̄p interactions
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Fig. 2. Impact parameter dependence of the probability
P (s, b) = |S(s, b)|2 at the three values of energy

√
s = 500 GeV

(shadow scattering mode),
√

s = 1800 GeV (black disk limit
at b = 0) and

√
s = 14 TeV (shadow and antishadow scatter-

ing modes)

where wH(b + b1 − b2) is the probability of hard con-
densate (parton) interactions. It is natural to assume that
the probability wH has a much steeper impact parameter
dependence than the functions Dhi

c (b), and, therefore, the
impact parameter dependence of wH determines the be-
havior of DH(b). Thus, we assume a simple exponential
dependence for the function DH(b), i.e.

DH(b) � σH exp(−MHb) , (11)

where the mass MH is determined by the hard scale of
the process. We perform numerical calculations of the gap
survival probability 〈|S|2〉 using (1), (5) and (11).

We take the hard scale MH to be determined by the
mass of the J/Ψ -meson, i.e. MH = MJ/Ψ . This choice is in
accord with the fact that the production of the J/Ψ -meson
can be treated as a hard process and therefore its mass sets
a hard scale [25]. Lower values of MH lie in the soft region2.

2 In (11) σH can be interpreted as the probability of hot spot
formation under condensate interaction, and RH � 1/MH is
the radius of this hot spot.

101 102 103 104

0.2

0.4

0.6

0.8

1.2

0.0

1.0

s1/2
, GeV

< |s|2>

MH

MH

=3 GeV

=8 GeV

Fig. 3. Energy dependence of the gap survival probability 〈|S|2〉

It should be noted that numerical results are rather stable
and depend weakly on the scale MH, when it is in the hard
region, i.e. MH ≥ MJ/Ψ ; e.g. for illustration we used the
value MH = 8 GeV and this leads to slightly lower values of
the gap survival probability at low energies. Results of the
calculations are presented in Fig. 3. One can notice that the
gap survival probability reaches its minimal values at the
Tevatron highest energy. This is not surprising since the
scattering at this energy is very close to the black disk limit.

The asymptotical behavior of the gap survival proba-
bility has the form

〈|S|2〉 � 1 − ξMH

2mQ
s

− ξMH
2mQ ln s . (12)

The two unitarization schemes (U -matrix and eikonal) lead
to different predictions for the gap survival probability in
the limit s → ∞; eikonal unitarization predicts 〈|S|2〉 = 0
at s → ∞, while the U -matrix formalism gives 〈|S|2〉 = 1.
The latter is a result of the transition to the antishadow
scattering mode in the U -matrix unitarization [14], when
the amplitude becomes |f(s, b)| > 1/2 (in the case of imag-
inary eikonal the scattering amplitude never exceeds the
black disk limit |f(s, b)| ≤ 1/2). It should be noted that
theFroissart–Martin bound implies the unitarity (not black
disk) limit for the partial amplitudes. When the amplitude
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exceeds the black disk limit (in central collisions at high
energies), then the scattering at such impact parameters
turns out to be of an antishadow nature. In this antishadow
scattering mode the elastic amplitude increases with de-
crease of the inelastic channels contribution at small impact
parameters and most of inelastic interactions occur in the
peripheral region; the inelastic overlap function has a pe-
ripheral impact parameter profile, which is the main reason
of the large gap survival probability.

Numerical predictions for the gap survival probability
obtained here depend on the particular parameterization
for the U -matrix, but the qualitative picture of the energy
behavior of 〈|S|2〉 reflects a transition to the new scat-
tering mode at the LHC energies and is valid for various
U -matrix parameterizations which provide increasing total
cross-sections. One should note that the numerical values of
〈|S|2〉 at the Tevatron energies are in qualitative agreement
with the number of quantitative calculations performed in
the eikonal approaches (cf. [4]).

In the sense of the gap survival probability the situation
should be more favorable at LHC energies since the ob-
tained numerical values of 〈|S|2〉 at these energies are close
to unity, and this should lead to much higher cross-sections
(by a factor of 40 compared to the calculations based on the
gap survival probability estimations in the framework of
the eikonal model [26]) e.g. for Higgs production in double
diffractive processes compared to the values obtained with
eikonal based estimations of the gap survival probability.

Thus, the antishadowing of which the appearance is
expected at the LHC energies should be correlated with
the enhancement of the Higgs production cross-section in
double diffractive scattering and this would significantly
help in detecting of the Higgs boson.
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